Reducing the threat of day one exploits

By on 10 Aug 2021

Category: Tech matters

Tags: , , ,

Blog home

Cyber hygiene and patching are key measures towards protecting data and systems. However, it’s not always possible or practical to patch when vulnerabilities and associated patches are announced. This problem gives rise to day one exploits.

Day one exploits are responsible for attacks such as the recent Microsoft Exchange attack that compromised hundreds of thousands of organizations. That attack began as a zero-day exploit and was followed by numerous day one exploits once the vulnerabilities were announced. Day one exploits were also used by Iranian threat actors about a year ago to gain access to financial sector networks via published virtual private network (VPN) vulnerabilities.

Patching systems, not always an easy fix

The crux of the problem are the hurdles organizations face with patching systems. This is what leads to intrusions on such a large scale. Additionally, once an organization is infiltrated, recovery can require system rebuilds, as was the case with recent attacks.

How can we build our infrastructure in such a way that patching is simplified, and complete recovery is enabled?

Twenty years ago, at a previous employer, our email was Unix-based. The system administrators had the IMAP-based mail server set up with a mirror. The team could:

  • Break the mirror
  • Patch or even rebuild a system
  • Restore screened content from backup
  • Prepare the system to go back online
  • Initiate a momentary outage to bring the clean system up
  • Wipe the system that was still vulnerable
  • Prepare the system to go back online
  • Rejoin the mirror

This process allowed for the mail servers to be rebuilt or patched with a minimum of downtime and could also be followed for any other server configured this way.

Using ‘cloud native’ environments for rapid updates

Resiliency such as this is increasingly important with infiltrations that are difficult to detect. The underlying premise of patching systems to thwart vulnerabilities is, as we have established, already flawed. This leads to the question of ‘Have my systems been infiltrated?’ Patching alone does not close any backdoors that may have been created by an attacker as a method of establishing persistence. Patching cycles can take time to catch up to the systems in question. An internal capability to manage and process system re-imaging is a necessity.

For many services that can be run in virtual environments, following the cloud native architectural style, it is possible to move a workload to a new instance of a patched or rebuilt application or server. Application data is screened and verified prior to being restored to this new environment. DevOps practices, such as decoupling of modules and mobility in cloud native environments, ensure rapid updates are possible. This can be done without impacting the supported service.

This is critical to the resiliency needed to recover from today’s attacks. The restored or rebuilt system should be configured to meet policy requirements and best practices for security configurations.

Resources and planning

Best practices for security configurations are intended to ensure system hygiene and reduce the chance of attacks. The CIS Benchmarks and CIS Controls provide guidance as to how you should prioritize policy and control implementations to reduce risk to your organization. There are over 100 CIS Benchmarks across more than 25 vendor families available for applications, operating systems, services, and devices.

Applications like Microsoft Exchange add some more complexity to patch and restore seamlessly, but this level of recoverability can be achieved with planning and the use of a database availability group (DAG). Planning is required to architect a network that is flexible enough to ease the recovery process. However, in some cases, this level of resourcing is not always possible. If virtual environments can be used, moving workloads is an excellent option.

Zero trust architecture and DevOps

What if patching were less scary? We are all accustomed to testing patches prior to deploying updates to systems. This causes a delay when the associated vulnerabilities can be mitigated, leaving the door open for day one exploits.

With consideration, the move toward pervasive zero trust architectures and DevOps processes could help reduce this problem. In DevOps, modules are minimized and referenced again rather than written again. There is a movement toward reducing the coupling of code to allow for faster updates beyond cloud native deployments. Applications have also steadily reduced any coupling to operating systems. This in turn minimizes any unforeseen impact of patches in different environments.

In zero trust architectures, applications or even components do not trust other applications or components and perform verification as expected before authorizing access. This decoupling and reducing reliance on adjoining modules, components, applications, and operating systems, will enable faster patching times. Ideally, vendors will embrace these concepts and make it possible for near-immediate patching without distributed testing at each site.

Establishing resilience against day one vulnerabilities

Resilient infrastructure coupled with lower risk patching from vendors will help close the attack window for day one vulnerabilities. If operating systems and application providers increasingly embrace DevOps principles, organizations will be able to patch systems more effectively. Until then, determine if and how your architecture can be more resilient. You’ll want to enable recovery of completely rebuilt systems that meet hygiene requirements.

Cloud-hosted environments often include this level of resiliency, especially if they are based on cloud native models. The threat landscape as indicated by recent attacks has demonstrated the need for this level of resiliency. It should be a priority for all organizations to determine the best risk mitigation strategy.

For additional information on the concepts described, see Transforming Information Security: Optimizing Five Concurrent Trends to Reduce Resource Drain, sections 7.2 and 7.3.

This post was first published on the Center for Internet Security Blog.

Kathleen Moriarty is Chief Technology Officer at Center for Internet Security and former IETF Security Area Director. She has more than two decades of experience working on ecosystems, standards, and strategy.

Rate this article

The views expressed by the authors of this blog are their own and do not necessarily reflect the views of APNIC. Please note a Code of Conduct applies to this blog.

Leave a Reply

Your email address will not be published.

Top